《材料精密成形综合实验(金属塑性成形部分)》实验讲义

实验1 板料拉伸实验(2学时)

一、实验理论

板料拉伸实验也称板料单向拉伸实验,主要于研究板料金属的冲压成形性 能,通过观察和测试得到反映冲压成形性能的量化指标和数据。板料的拉伸试验 如图 1-1 所示,采用标准拉伸试样,通过试验获得材料拉伸应力——应变曲线。 从拉伸曲线中所得到的有关材料的力学性能指标,可以反映出材料的某些冲压性 能。现简要分析如下:

1. δ_i 与 δ

均匀伸长率 δ_j 是指试样拉伸变形开始产生缩颈时的伸长率; δ 是拉伸试验中试样破坏时的总伸长率。 δ_j 表示材料产生均匀稳定的塑性变形能力,由于冲压成形是在稳定而均匀地变形之中进行的,因此,材料的 δ_j 可以间接地表示伸长类变形的极限变形程度。 δ_j 越大,则成形极限越大。

图 1-1 板料的拉伸实验

a) 拉伸试样 b) 拉深曲线

2. 屈强比 σ_s / σ_b

屈强比对于材料冲压性能是一个极为重要的参数。塑性成形就是利用材料屈

服点与抗拉强度之间的这一段可塑性能而实现的。屈强比越小,说明 σ_s 和 σ_b 之间的距离越宽,材料塑性变形的能力越强;对压缩类成形,材料不易起皱;对弯曲成形,回弹变形小;对伸长类成形,零件形装尺寸冻结性好,工艺稳定性高, 对冲压成形很有利。

3. 硬化指数 n

随着塑性变形程度的增加,材料的塑性指标降低,强度指标上升,这种现象称为加工硬化。硬化指数n值就是评价材料加工硬化性能的参数,n值增大,能够提高材料的局部应变能力,使变形均匀化,增大材料极限变形。

4. 板厚方向性系数 r

板厚方向性系数 r 也称为 r 值,是指板料试样拉伸时,宽度方向应变 ε_b 与厚度方向应变 ε_b 之比,所以也称为塑性应变比。其表达式为:

$$r = \frac{\varepsilon_b}{\varepsilon_t} \frac{\ln \frac{b}{b_0}}{\ln \frac{t}{t_0}}$$

r值越大,厚度方向上不容易变形,对于拉深成形就不易出现起皱。

二、实验目的及内容

1. 实验目的

板料拉伸实验也叫单向拉伸实验。应用拉伸实验方法,可以得到许多评定板 料冲压成形性能的实验数据与曲线,为制定板料冲压成形工艺方案与计算确定工 艺参数提供科学依据;理解并深化固态金属塑性成形中应力与应变关系这一基本 理论;掌握板料拉伸实验方法。

2. 实验内容

(1) 建立拉伸力 F 与伸长变形 ΔL 之间的拉伸曲线;

(2) 建立名义应力 σ 与伸长 δ 之间的名义应力拉伸曲线;

(3) 测试并计算屈服点 σ_s , 抗拉强度 σ_b , 屈强比 σ_s / σ_b , 均匀拉伸率 δ_U 、硬化指数n和各向异性系数r;

三、实验仪器、设备及试样

1. 仪器设备

WDW3200 微控电子万能试验机,游标卡尺,分规等。

2. 试样(图 1-1a)

试样材质为 08 钢板,按国家标准 GB/T228-2002《金属材料 室温拉伸试验 方法》中规定的低碳钢板状试件制作,每组 3 件。

四、实验方法和步骤

1. 在试样上用分规标定 L₀=50mm,用游标卡尺测量试样 L₀、t₀、b₀并填入 表 1-1 中。

2. 启动 WDW3200 微控电子万能试验机,将试样一端放入上横梁的夹具中 并夹紧。

3. 操作手动按钮, 使下横梁上升。打开下横梁上的夹具, 使试样的另一端 放入夹具并夹紧。

4. 启动 WDW3200 微控电子万能试验机的计算机操作系统,设定有关技术参数。

5. 点击控制软件上的"开始", 拉伸开始后注意观察试样的变化。

6. 试样拉断后试验机自动停机,单机试验结果曲线预览并打印试验结果曲线。

7. 测量试样拉断后的 F1、L1、b1、t1,填入表 1-1。

试	料	料	标			试材	羊 1			试材	羊 2			试材	羊3	
样	宽	厚	距	F _{max}	E.	T	h	t .	E.	Τ.	h.	t -	E.	Τ.	h.	t -
号	b_0	t ₀	L ₀		Г 1	L 1	01	l1	F 2	L ₂	02	t 2	Г3	L ₃	03	13

表 1-1 板料拉伸试验数据记录

五、实验报告

(1)根据实验数据,描绘拉伸力F与拉伸变形ΔL之间的拉伸曲线;并简要 分析 08 钢板在拉伸过程中有哪几个阶段,每阶段的力与变形有何相互关系,及 发生的物理现象。

(2) 以实验的数据为依据,通过计算得到名义应力 σ 和应变 ε 值,并描绘

名义应力 σ 与应变 ε 之间的名义应力——应变曲线 (σ — ε 曲线);

(3)根据实验数据,计算屈服点的屈服应力 σ_s ,抗拉强度 σ_b ,屈强比 σ_s/σ_b , 均匀伸长率 δ_j 、总伸长率 δ 、硬化指数n和板厚方向系数r;。

(4) 简述由板料拉伸实验所得到的板料成形性能各参数的意义。

实验 2 冲压模具装拆实验

一、实验理论

1.冲压模具的基本形式

(1)按冲压工艺性质分,有落料模、冲孔模、切边模、弯曲模、拉深模、 成形模和翻边模等。

(2) 按冲压工序的组合方式分,有单工序的简单模、和多工序的级进模、 复合模。

(3)按模具的结构形式,根据上下模的导向方式,有无导向模和导板模、 导柱模、滚珠导柱模等;根据卸料装置,可分为带固定卸料板和弹性卸料板冲模; 根据挡料形式,可分为固定挡料钉、活动挡料销、导正销和侧刃定距冲模。

(4)按采用的凸凹模材料可分为硬质合金冲模、钢质硬质合金冲模、钢皮冲模、橡皮冲模和聚氨酯冲模等。

(5) 按冲压模具的轮廓尺寸大小,分为大型和中小型冲模等。

一般按工序的组合方式对模具进行分类,即简单模、复合模、级进模。

简单模 模具在一次冲程中,只完成一道工序,称为简单模或单工序模。

复合模 模具在一次冲程中,在模具同一位置上同时完成两道及以上的工序的冲压模具。

级进模 模具在一次冲程中,在模具不同位置,同时完成两道及以上工序的 冲压模具。

2.冲模的主要零件

组成冲模的主要零件,根据其功用可以分为两大类:

(1) 工艺结构件 这类零件直接参与完成工艺过程,并且与毛坯直接发生 作用。主要包括工作零件、定位零件、卸料推件零件。

(2) 辅助结构零件 这类零件不直接参与完成工艺过程,也不与毛坯直接 作用,只是对完成工艺过程起辅助作用,使模具的功能更加完善。其主要包 括导向零件、固定零件、紧固集其它零件等。冲模主要零件的分类见表 2-1。

表 2-1 冲模主要零件的分类

	工艺结构部分		辅助结构部分			
工作零件	定位零件	压料、卸料	导向零件	固定零件	紧固及其它	
		及顶件零件			零件	
凸模	挡料销	卸料板	导柱	上下模座	螺钉	
凹模	导正销	压边圈	导套	模柄	销钉	
凸凹模	导料板	顶件器	导板	凸、凹模固	键	
	定位销	推件器	导筒	定板	其它	
	定位板			垫板		
	侧压板			限制器		
	侧刃					

二、实验目的及内容

1. 实验目的

(1) 了解并掌握冲压模具的基本类型、结构和功能。

(2) 了解构成冲模的主要零件及这些零件的作用与相互装配关系。

(3) 了解冲压模具与压力机的安装、调整及操作方法。

2. 实验内容

(1) 观看图 2-1 所示的几种典型模具动画及视频拆装演示,理解这些模具的结构及其工作原理。

(2)根据其结构对上述模具进行拆卸,熟悉各零件的名称、作用及相互装 配关系。

(3) 将拆散的零件按顺序装配好。

(4)将装好的模具安装在压力机上,并学会模具安装在设备上的要领。

三、实验设备及工具

1. Y41K-25型液压机、游标卡尺、木锤、扳手、起子等。

2. 简单模、复合模、连续模若干套。

3. 简单模、复合模、级进模的动画视频及三维 CAD 模型。

a)简单模拆装视频截图

b)复合模三维造型

c) 级进模 flash 动画截图

图 2-1 拆装模具的动画视频图片

四、实验方法和步骤

 认真观看所拆装模具的动画及视频仿真,做到对模具结构及工作原理有 基本的了解。

2. 将实验模具按序拆散,记录 1 所有零件的名称、作用和与其他零件的装 配关系。

3. 将拆散的模具按顺序装配好。

4. 将装好的模具安装 Y41K-25 型液压机上,调试模具。

5. 模具调试好之后,启动液压机观查模具的工作过程及工作原理。

五、实验报告

(1) 画出所拆装的模具结构简图,对所有零件编号,写出零件名称、作用 及相互装配关系。

(2) 简述模具工作原理。

(3)简述模具的安装及调试过程,并说明模具闭合高度与压力机滑块(压头)行程之间的关系。

(4) 思考如何进行所拆装模具的计算机辅助设计(CAD)。

实验3 板料冲裁模具间隙实验

一、实验理论

冲裁是利用模具使材料分离的一种冲压工序,它主要是指落料和冲孔工序。 冲裁既可以加工出成品零件,又可以为其它成形工序制备毛坯。

冲裁加工之后,材料分成两个部分,即冲孔和落料,冲孔是指在板料或者工件上冲出所需形状的孔,冲去的为废料,而落料是指从板料上冲下所需形状的零件或者毛坯。图 3-1 所示垫圈零件,制取外形 *ϕ*22mm 的冲裁工序称为落料,制取内孔 *ϕ*10.5mm 的冲裁工序称为冲孔。

图 3-1 垫圈

1.冲裁过程的分析

普通冲裁过程大致可以分成三个阶段,如图 3-2 所示。

图 3-2 冲裁过程

 1).弹性变形阶段 凸模与材料接触后,使材料压缩并产生拉伸和弯曲弹性 变形,此时,材料内应力没有超过材料的弹性极限。若卸去载荷,材料则恢复原状。

2).塑性变形阶段 当凸模继续下压,材料内部的应力值达到屈服强度时开始 产生塑性流动、剪切变形,同时还伴随有金属的拉抻和弯曲。随着凸模挤入材料 的深度增大,塑性变形程度逐渐增大,变形区材料硬化加剧,直到刃口附近的材 料内应力达到材料强度极限,冲裁力达到最大值,村料出现裂纹,开始破坏,塑 性变形阶段结束。

3).断裂分离阶段 随着凸模继续压入材料,已经出现的上、下裂纹逐渐向金属内层扩展延伸,当裂纹相遇重合时,材料即被剪断完成分离过程。

图 3-3 为冲裁时剪切区受力状态图。图中 F_1 、 F_2 分别是凸、凹模对板料的 垂直作用力; F_3 、 F_4 分别是凸、凹模对板料的侧压力; μF_1 、 μF_2 为凸、凹模端 面作用于板料的摩擦力; μF_3 、 μF_4 为凸、凹模侧面作用于板料的摩擦力。其中 摩擦力 μF_1 和 μF_2 随凸、凹模间隙值大小的不同而方向发生改变。

图 3-3 冲裁受力状态

1一凸模 2一板料 3一凹模

从受力情况分析,侧向压力 F₃、F₄一定小于垂直压力 F₁、F₂;而在压力小的地方裂纹更容易产生和扩展。因此,冲裁分离时的初始裂纹是从模具刃口侧面产生的,随之上、下微裂纹迅速扩展延伸并相遇而完成分离。

2. 冲裁件质量

冲裁件质量主要是指切断面质量、表面质量、形状误差和尺寸精度。对于冲 裁工序而言,冲裁件切断面质量往往是关系到工序成功与否的重要因素。从图 3-4 中能够看到,冲裁件切断面可以明显地区分为四个部分:1)光亮带;2)断 裂带;3)圆角;4)毛刺。

图 3-4冲裁件切断面特征a) 落料件b) 冲孔件

1).光亮带的形成,是在冲裁过程中,模具刃口切入材料后,村料与模具刃口侧面挤压而产生塑性变形的结果。光亮带部分由于具有挤压特征,表面光洁垂直, 是冲裁件切断面上精度最高、质量最好的部分。光亮带所占比例通常是冲裁件断 面厚度的 1/2 ~ 1/3。2)断裂带是在冲裁过程的最后阶段,材料剪断分离时形成 的区域,是模具刃口附近裂纹在拉应力作用下不断扩展而形成的撕裂面。断裂带 表面粗糙并略带斜角,不与板平面垂直。3)圆角形成的原因当模具压入材料时, 刃口附近的材料被牵连变形的结果,材料塑性越好,则圆角带越大。4)切断面 上的毛刺是在冲裁过程中出现微裂纹时形成的。随后已形成的毛刺被拉长,并残 留在冲裁件上。

冲裁件切断面和表面质量的影响因素很多,切断面上的光亮带、断裂带、圆 角、毛刺等四个部分,各自所占断面厚度的比例也是随着制件材料、模具和设备 等各种冲裁条件不同而变化的。

二、实验目的及内容

1、实验目的

通过实验,理解冲裁过程机理,掌握冲裁模具间隙对冲压件质量的影响及其 确定方法。

2、实验内容

(1)学习并掌握板料冲裁凸、凹模间隙大小对冲裁件端面质量的影响(断面 粗糙度、毛刺高度,光亮带大小等);

(2) 了解凸、凹模间隙大小对冲裁力的影响;

(3) 确定板料冲裁模具合理间隙值。

三、实验仪器、设备及试样

- (1) Y41K-25 单柱液压机;
- (2) 冲裁实验模具一套 (见图 3-5);
- (3) 0~25mm千分尺, 游标卡尺;
- (4) t=2.5及t=1mm钢板条料;
- (5) 冲裁力数据采集系统。

a) 模具造型图片

b)实验模具工程图

图 3-5 冲裁间隙实验模具图示

四、实验方法和步骤

1. 检查设备、冲裁力测试系统、模具等能否正常工作;

2. 使用 D=42mm 的凹模,选取不同直径的凸模,对 t=2.5mm 的板料进行冲裁,测量不同直径的凸模下的零件毛刺高度(圆角均布的三点),取平均值记入表 1,并记录不同直径凸模下的冲裁力,填入表 3-1;观察不同冲裁间隙时零件断面的情况。

3. 对 t=1.0mm 的钢板重复进行上面的操作,并记录数据。

凸模直径 D(mm)		41.60	41.65	41.70	41.75	41.80	41.85	41.90
模具间隙 Z (mm)		0.4	0.35	0.3	0.25	0.2	0.15	0.1
t_2 5	毛刺高度							
t=2.5 mm	mm							
	冲裁力 KN							
←1	毛刺高度							
l=1	mm							
111111	冲裁力 KN							

表 3-1 参数测量值

五、实验报告

1. 根据记录的毛刺高度,绘制 h-z 曲线,确定 t=1mm 及 t=2.5mm 板料的合理 间隙值,记入表 3-2 并与理论值进行比较。

表 3—2 冲裁	模具间原值
田公司附估	灾 卧确空的人耳

板料厚度	理论间隙值	实验确定的合理间隙值
t=2.5mm		
t=1.0mm		

- 试分析冲裁模间隙对冲裁件质量(断面粗糙度、毛刺高度、冲裁力、模具 寿命及制件尺寸)的影响。
- 3. 试计算 D=42mm 圆形毛坯落料模具有合理间隙时的凸、凹模刃口尺寸及制 造公差(冲裁件公差△=0.100mm)。

实验4 板料拉深成形工艺模拟实验

本实验分为两部分:板料拉深成形工艺的物理模拟(即工艺实验)部分;板 料拉深成形工艺的数值模拟部分(课内指导,课外时间完成)。

第一部分 板料拉深成形工艺实验

一、实验理论

将毛坯通过模具制成开口空心零件的冲压工艺方法称为拉深,也可以称为拉延。拉深工序可以制成圆筒形、盒形、锥形、球形、阶梯形以及形状复杂的覆盖零件。拉深工序加工的零件尺寸范围大,应用也非常广泛。

1. 圆筒形件拉深变形与力学分析

将直径为 D₀的毛坯逐步拉深成为具有直径 d、高度 h 的零件,在拉深过程中,根据拉深毛坯的不同状态可以分为三大部分:凸缘部分是变形区,直壁部分 是传力区(或称己变形区),而筒底部分是不变形区(图 4-1)。通过对毛坯三大 部分进行应力应变分析,又可以进一步分为:凸缘变形区 1、凹模圆角变形区 2、 直壁传力区 3、凸模圆角传力区 4 和筒底不变形区 5。图 4-2 显示了各个部位的 应力应变状态。

图 4-2 拉深过程应力与应变状态

圆筒形件拉深时,毛坯的凸缘变形区切向受压应力,径向受拉应力(图 4-3)。 当厚度方向的应力忽略不计时,可以利用平衡微分方程和塑性方程求解出凸缘变 形区的切向应力和径向应力。

图 4-3 圆筒形件拉深时的应力分析

1). 无压边圈的拉深 在拉深毛坯边缘取一扇形微分体,在拉深过程的任意瞬间,微分体处于平衡状态,其径向合力为零:

$$\left(\sigma_{\rho} + \mathrm{d}\sigma_{\rho}\right)\left(\rho + \mathrm{d}\rho\right)t\mathrm{d}\theta - \sigma_{\rho}\rho t\mathrm{d}\theta + 2\sigma_{\theta}t\sin\frac{\mathrm{d}\theta}{2}\mathrm{d}\rho = 0$$

简化上述并略去高阶项,利用最大剪应力塑性条件($\sigma_{\rho} + \sigma_{\theta} = \sigma_s$)和边界条件

 $(\rho = R$ 时, $\sigma_{\rho} = 0$),得到凸缘变形区径向拉应力和切向应力为:

$$\sigma_{\rho} = \sigma_s \ln \frac{R}{\rho}, \quad \sigma_{\theta} = \sigma_s \left(1 - \ln \frac{R}{\rho}\right)$$

根据此式获得凸缘变形区应力分布规律,如图 4-3 所示。从图中的径向拉应 力 σ_{ρ} 与切向压应力 σ_{θ} 的分布曲线可以看到,在变形区内的大部分区域,切向压 应力 σ_{θ} 的绝对值都大于径向拉应力 σ_{ρ} ,即变形区的主要变形方式是压缩变形。 这说明圆筒形件拉深时的主要变形区为压缩类成形。切向压应力 σ_{θ} 在毛坯变形 区外边缘达到最大值,即:

$$\sigma_{\theta \max} = \sigma_s$$

径向拉应力 σ_a 在毛坯变形区内边缘处达到最大值:

$$\sigma_{\rho \max} = \sigma_s \ln \frac{R}{r}$$

从图 4-3 中应力分布曲线可以看到,当切向压应力 σ_{θ} 和径向拉应力 σ_{ρ} 的绝对值相等时,即令 $|\sigma_{\rho}| = |\sigma_{\theta}|$ 时,则可以求"等应力圆"的位置。

$$\rho = 0.61R$$

当 $\rho < 0.61 R$ 时, $\left| \sigma_{\rho} \right| > \left| \sigma_{\theta} \right|$ 。

当 $\rho > 0.61 R$ 时, $|\sigma_{\rho}| < |\sigma_{\theta}|$ 。

从以上分析也可以得出初步的结论:圆筒形件拉深时,靠近凹模圆角处的毛 坯,其主应变为径向受拉应变,板料有变薄现象,而靠近毛坯外边缘部分的最大 应变为压缩应变,板料略有增厚。

2). 有压边圈的拉深 当使用压边圈进行拉深时,圆筒直壁传力区所受拉应 力除了凸缘变形所需的应力σ_{ρmax}之外,还包括由压边力 F_Q在凸缘变形区表面产 生的摩擦阻力σ_m、毛坯通过凹模圆角时产生弯曲、校直变形的应力σ_{wz}和摩擦 阻力。

当包角 $\alpha = \pi/2, \rho = r$ 时,得到圆筒直壁传力区承受的最大总压力 σ_{max} 为: 拉深力的理论计算公式为:

$$F = \pi dt \sigma_{\max} = \pi dt \sigma_s \left(\ln \frac{R}{r} + \frac{2\mu}{\pi dt \sigma_s} + \frac{t}{2r_d + t} \right) (1 + 1.6\mu)$$

式中, d 为圆筒形件直径; t 为毛坯厚度; µ为摩擦系数; r_d为凹模圆角半径。

拉深力的大小主要与材料性能、零件和毛坯尺寸、凹模圆角半径以及润滑条件等有关。上述关于拉深力的理论推导给拉深成形分析、工艺计算提供了很好的方法和理论性依据。但是对于实际应用,理论公式计算起来并不方便,拉深力通常采用以下经验公式进行计算:

第一次拉深力:
$$F_1 = \pi d_1 t \sigma_b K_1$$

第二次及以后各次拉深力:

$$F_i = \pi d_i t \sigma_h K_2 \qquad (i=2, 3, \dots, n)$$

式中, d_1 为第一次拉深后零件直径; d_i 为第 i次拉深后零件直径; F_i 为第 i次拉深力; σ_b 为材料强度极限; K_1 , K_2 为系数,可查手册或有关资料。

2. 圆筒形件拉深工艺

1). 拉深系数和拉深次数

每次拉深后圆筒形件的直径与拉深前毛坯直径之比称为拉深系数 m。通常用 下式表示:

$$m = \frac{d}{D}$$

式中, d 为拉深后的圆筒件直径; D 为毛坯直径。

拉深系数可以用于反映圆筒形件拉深的变形程度。从上式中可以看出,拉深 系数越小,其拉深变形程度大。生产中也用拉深系数的倒数,即拉深比来表示拉 深变形程度:

$$K = \frac{1}{m} = \frac{D}{d}$$

对于每一种材料,其塑性变形程度都会有一定的极限,因而每一种材料的拉 深系数也必然会有一个最小界限值。这个拉深系数的最小界限值在拉深工艺中称 为极限拉深系数。当成形零件的拉深系数小于材料许用的第一次极限拉深系数 时,就需要进行多次拉才能完成零件成形。对于需要多次拉深的零件,其每次的 拉深系数为:

第一次拉深时:

$$m_1 = \frac{d_1}{D} \qquad d_1 = m_1 D$$

以后各次拉深时:

$$m_{2} = \frac{d_{2}}{d_{1}} \qquad d_{2} = m_{2} d_{1} = m_{1}m_{2}D$$

$$m_{3} = \frac{d_{3}}{d_{2}} \qquad d_{3} = m_{3}d_{2} = m_{1}m_{2}m_{3}D$$

$$\vdots$$

$$m_{n} = \frac{d_{n}}{d_{n}} \qquad d_{n} = m_{n}d_{n-1} = m_{1}m_{2}m_{3}\cdots m_{n}D$$

式中, D 为毛坯直径; d_n为零件直径; d₁、d₂、d₃、…, d_{n-1}为各次成品直径。因为零件的拉深系数为:

$$m_{\text{set}} = \frac{d_n}{D}$$

所以零件拉深系数与每次拉深系数的关系为:

$$m_{\text{T}} = \frac{d_n}{D} = m_1 m_2 m_3 \cdots m_n$$

材料的许用极限拉深系数*m*₁*m*₂*m*₃…*m*_n可以查手册或有关资料,通过上式可以推算出该零件所需要的拉深次数和中间拉深毛坯的尺寸。

影响材料的许用极限拉深系数的因素很多,在进行拉深工艺设计和实际冲压 生产中,充分利用各种有利因素,采取有效措施提高拉深毛坯传力区强度和承载 能力,降低变形区变形所需的变形力,使变形区成为容易产生塑性变形的区域, 是降低每次极限拉深系数,减小拉深次数,保证成功实现拉深成形的关键。

2). 拉深件展开毛坯尺寸的确定

圆筒形拉深件采用圆形毛坯进行拉深。为了简化毛坯计算,可以忽略拉深过 程中板料厚度的变化。根据金属塑性变形体积不变条件,拉深毛坯尺寸直接按拉 深前后毛坯和拉深前后毛坯和拉深零件面积相等的原则进行计算。

图 4-4 圆筒形件拉深毛坯计算

按照上述原则,先将拉深零件分为若干个简单几何体(图 4-4),再将几何体 面积计算后相加,可以得出拉深零件的总面积,然后计算毛坯尺寸:

$$A = \frac{\pi D^2}{4} = A_1 + A_2 + A_3 = \Sigma A i$$
$$D_{\sqrt{\frac{4}{\pi}\Sigma A i}}$$

 $A_{i} = \pi d(H-R)$

即

分别计算图 2-7 所示零件面积:

$$A_{2} = \frac{\pi}{4} \Big[2\pi R \big(d - 2R \big) + 8R^{2} \Big]$$
$$A_{3} = \frac{\pi}{4} \big(d - 2R \big)^{2}$$

将三部分面积代入前式,得:

$$D = \sqrt{(d-2R)^2 + 2\pi R(d-2R) + 8R^2 + 4d(H-R)}$$

式中,d为圆筒件外径;R为圆筒件底部内面圆角半径;H为直壁高度,实际计算时要增加修边余量 Δh , Δh 可查手册或资料。

二、实验目的及内容

1、实验目的

(1) 学习并掌握板料拉深成形工艺实验的操作方法;

(2) 建立板料拉深成形工艺的感性认识,以及拉深成形规律与机理的理解;

(3) 基本掌握拉深成形工艺参数(毛坯展开、成形力等)的计算方法。

2、实验内容

- (1) 完成薄壁圆筒试件毛坯展开及冲压工艺参数计算
- (2) 完成落料-拉深复合模成形工艺实验

三、实验仪器设备及试样

1、仪器设备

Y32-250 数控液压冲床、游标卡尺、钢皮直尺等。

2、实验模具: 落料拉深复合模一套(见图 4-5)

图 4-5 落料-拉深复合模

3、试样

坯料: 08 钢板条料,厚度 t=0.5mm。

试样:如图 4-6 所示。

a 毛坯的直径 b 圆筒件试样

图 4-6 拉深毛坯及零件图

四、实验方法和步骤

1、测量坯料尺寸,由图 4-6b 所示圆筒件试样,计算展开毛坯的直径 D(图
4-6a)和冲裁力 F_常与拉深成形力 F_影;

2、熟悉模具及冲床的操作程序;

3、完成落料-拉深复合模成形工艺实验;

4、观察圆筒件拉深成形过程,分析圆筒工件分为哪几个变形区及每个变形 区的应力与应变状态。

五、实验报告

1、简述拉深成形工艺的过程(包括毛坯展开计算、拉深力、拉深系数等工 艺参数)。

2、分析影响拉深件质量的因素及其预防措施。

3、简述本实验落料-拉深复合模的结构特点及工作原理。

第二部分 板料拉深成形工艺的数值模拟

一、实验理论

冲压过程的数值模拟对于产品的概念评价、设计、样品试制、生产准备 等各个阶段都能给予支持,以达到降低生产成本,改善产品质量和使用性能, 缩短开发周期的目的。 冲压成形过程数值模拟可以采用逆算法或增量算法。逆算法中具有代表 性的方法是一步法,它需要的输入数据少、分析计算时间短,可预测合理的 毛坯形状,但结果不够准确,因而适用于概念评价和初步设计阶段。而增量 法的计算结果精确性高,但需要详尽的输入数据,分析计算时间长,因此适 用于详细设计和模具调试阶段。板料数值模拟软件大多是基于动力学方程和 中心差分的显式算法,采用中厚壳 BT 单元,并结合实际工艺参数及工艺条 件,板料单元采用自适应的求解过程。

二、软件操作说明

本实验采用 eat/DYNAFORM 软件,完成本实验第一部分工艺实验中零件的拉深成形工艺过程的数值模拟。具体操作过程包括前处理数据准备、拉深成形求解、计算结果分析三个部分。

1. 前处理数据模准备

利用三维软件绘制本次实验所用的模型(凹模,凸模,压边圈,板料轮廓线都需要绘制),导出本次拉深工艺数值模拟用的.igs模型文件(即 die.igs,punch.igs,binder.igs,blank.igs)。

- 1.1.模型导入
- 打开 Dynaform 软件, 依次点击 文件->导入, 选择之前绘制的 die.igs, punch.igs, binder.igs, blank.igs 模型文件, 将其导入到 Dynaform 中。
- 点击□□按钮,将当前模型保存到指定目录文件夹下。
- 检查单位设置是否符合我国标准,依次点击工具栏上工具->分析设置, 我们可以看到软件的默认设置是符合要求的,点击确定按钮即可,如下 图,

分析设置					
单位					
MM, TON, SEC, N					
拉延类型					
Single action 💌					
接触界面					
Form One Way S. to S.					
冲压方向 Z ▼ 接触间隙 1.00					
按照当时原 1.00 DYNA求解器精度 单精度 D:\PROGRA~2 双精度 D:\PROGRA~2					

1.2.板料及工具网格剖分

1.2.1.新建 BLANK、DIE、PUNCH、BINDER 四个零件层,依次点击工具

栏上 零件层->创建零件层 , 在名字后输入 BLANK , 如下图, 然后点击 应用按钮。

创建零件层	
名称	BLANK
ID	9
颜色	
确定	应用 取消

同样的方式,依次创建其他零件层。

- 1.2.2. 板料网格剖分
- 设置 blank 为当前层,依次点击工具栏上 零件层->设置当前零件层, 点击 BLANK 为当前零件层,点击 确定,如下图所示,

当前零件					
通过光标选择					
通过名称选择					
IGS00002 3					
BLANKPAR 4					
BLANK 5					
DIE 6					
······································					
确定					

● 点击工具栏上 题 ,点击 边界线 ,

先择选项		
边界线		
曲面(<u>S</u>)		
管子		
退出	结束	取消

弹出 选择线 对话框,单击坯料轮廓线(途中高亮显示线),如下图所示,

■ eta/DYNAFORM 5.6.1 - E\CAE继承\CAE继承\V世衔老时\/)=15CAE(使祥\/)=15CAE/df	All Charles - Courses - Margini, Margini, Margini, Courses - Cours	
文件(2) 专件后(2) 邮处理(2) 機商工程(2) 近科工程(3) 设置(3) 回期补偿 工具	(1) 我來的 (補助工具(1) 稅田(1) 分析(1) 前北理 新教(1)	
	C	•
达择线		
量过光标选择		
man I use I	falle file	
ME8/A		
Z		
Y		
EXA (OVINE ODIN		
E TH/DUNNIFURN		
选择线		▲ 当約常件题 BLANK 型音
15.4C-2018 連邦的		PH DEFE
35.1C235年 通牒93		

选择后单击 确定 按钮, 弹出 网格大小 对话框,设置如下图,说明:为 了提高计算速度,本文采用较大的单元大小,如需要较高的模拟精度,可以减小 单元大小,或通过工具半径来确定单元大小,确定方式:选取板料流动过的凹模 的最小圆角半径,如果有拉延筋,一般选取拉延筋半径。

网格大小						
口工具半径: 0.750000						
☑ 单元大小: 2						
	转换					
确定	后退 取消					

点击 确定 按钮,如下图,点击 是 按钮,完成网格剖分。

1.2.3. 凹模网格剖分

- 设置 DIE 为当前层,设置方式见 1.2.2。
- 点击工具栏上,在弹出的曲面网格划分对话框中,单击
 选择曲面 按钮,选择导入的 die 曲面,如下图所示

 ● 点击 确定 按钮后,返回 曲面网格划分 对话框, 依次点击 应用->是, 如下图所 示,完成凹模网格剖分,再单击 退出 按钮。

1.2.5 压边圈网格剖分: 同凹模网格剖分, 划分结果如下图所示

- 1.3.创建分析模型
 - 1.3.1. 新建模拟工程

点击工具栏上 设置 ->自动设置,弹出 新建模拟 对话框,设置如下图所示:

新建模拟	
─模拟 类型: Sheet forming	_
- 板料	
「工艺 类型: Single action	_
- 工具参考面	◆凹模/凸模
确定	取消

- 1.3.2. 模拟设置
- 点击 一般 标签,设置如下:

	Sheet forming	
	设置(S) 工具(I) 预览(P) 提交(J)	
	10 forming	
	—————————————————————————————————————	
	标题 标题: drawing	
	TAWES	
	工作坐标系: GLOBAL ▼ 选择 新建	
点击 板坯 标签	,切换到板料设置页面,点击	定义几何模型 ,如下

图,

定义几何体	
┌零件层────	
添加零件层	删除零件
添加单元	复制单元
分割	零件
	39.44

点击 添加零件层 按钮,选择 BLANK ,

单击 确定 按钮后,弹出如下对话框,单击 退出 返回板坯页面。

定义几何体	
BLANK 5	
添加零件层	删除零件
添加单元	复制单元
分割	零件
显示	退出

定义材料:单击 BLANKMAT

┘ , 单击 材料库 , 如下图,

材料	
类型: T24	444_ DQSK
	380_
导出 材料库	270

本实验中使用的是型号为 08AL 的钢材,参数如下,其力学性能与材料库 中 DQSK T24 材料模型比较相近。

表 2-1 08AL 力学性能参数

<i>* 参数</i>	弹性模量	伸长率	强度极限 σ_b	屈服极限 σ_s	硬化指	方向性
	(MPa)	(%)	(MPa)	(MPa)	数 n	系数r
纵向(0°)	204.33	64.30	293.12	172.45	0.28504	2.679
斜向(45°)	195.46	56.78	300.17	176.18	0.28456	1.954
横向(90°)	204.62	58.39	291.86	178.67	0.27544	3.210

平均板厚方向性系数:

$$\overline{r} = \frac{r_0 + r_{90} + 2r_{45}}{4} = \frac{2.679 + 3.210 + 2 \times 1.954}{4} = 2.45$$
(2-6)

板平面方向性:

$$\Delta r = \frac{r_0 + r_{90} - 2r_{45}}{2} = \frac{2.679 + 3.210 - 2 \times 1.954}{2} = 0.99$$
(2-7)

从材料库中选择 DQSK T24 材料,如下图所示,单击 确定 按钮,完成 材料定义。

或者由实验一一一板料拉伸实验所得到的参数,直接输入(推荐)。

● 点击 Ⅰ 按钮,进入工具设置标签页,

首先设置凹模,单击左侧 die 图标,进入凹模设置页面,单 击 定义几何模型... 图标,如下图所示,

Sheet forming				
设置(S) 工具(I) 预览(2)	提交 <mark>(J</mark>)		
10.forming				¥
一般 板坯 边界线	除件	L序 控制参数	1	
die punch	一当前工具 名称:	10_ die		
binder	- 几何体 定义几(可模型	□显示	Reference
			位置: 0	0.0 0.0
	工作方向			
	方向: 移动	-W		
	1950 	0.0		
	偏置:	0.0	None	•
	摩擦系数:	0.125	Steel	▼ 高級…
添加				
刪除			定位	2 自动分配
摘要				退出

弹出 定义几何体 对话框, 单击 添加零件层 按钮, 如下图所示:

定义几何体	
┌零件层───	
沃加泰件屋	用版全要作
28/11/李叶十/云	十1-金-不知的
添加单元…	复制单元
创建导	前销
显示	退出

选择 DIE 零件层,点击 确定,如下图所示:

Sheet forming	
设置(S) 工具(T) 预览(E) 提交(J)
10.forming	¥
一般板坯边界	条件 <mark>工具</mark> 工序 控制参数
die punch	_ 当前工具 名称: 10
binder	
	DIE 6 区显示 Reference
	位置: 0.0 0.0 0.0
	移动 0.0
	接触
	偏置: 0.0 None ▼
	摩擦系数: 0.125 Steel ▼ 高级
添加	
刪除	定位… 自动分配
摘要	

按照如上操作依次定义 punch 和 binder,结果如下图所示:

Sheet forming	Sheet forming
设置(S) 工具(I) 预览(P) 提交(J)	设置(S) 工具(I) 预览(P) 提交(J)
10.forming	10.forming
一般 板坯 边界条件 工具 工序 控制参数	一般版团边界条件工具工序控制参数
die 当前工具 	die 当前工具 punch 名称: 10_binder
Dinder 几何体 PUNCH 7	Dinder 月间体 BINDER 8 区显示 Reference
位置: 0.0 0.0	位置: 0.0 0.0 0.0
工作方向 方向: +W 移动 0.0	工作方向
接触 偏置: 0.0 None ▼ 摩擦系数: 0.125 Steel ▼高级	接触 偏置: 0.0 None ▼ 摩擦系数: 0.125 Steel ▼高级
添加 一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	透加 一 透加 一 定位… 自动分配
摘要	摘要

工具定位: 单击 定位 按钮

Sheet forming				
设置(S) 工具(T) 预览 <mark>(</mark> 2)	提交U		
10.forming				*
一般 板坯 边界 die	条件 工具 一当前工具 名称:	工序 控制参数 10_ binder	1	
binder	一几何体 BINI		~ 모 묘 ~	Reference
			位置: 0.0	0.0 0.0
	 工作方向 方向: 移动 	+W		
	- 接触 - 偏置: 摩擦系数:	0.0	None 💌 Steel 💌	高级
添加			定位	自动分配
摘要				退出

选择 10_punch,勾选 10_die 和 10_binder 后的复选框,单击 确定 按 钮,完成装配。

	定位				
	一毛坯				
	位置:	36.0	On: 10_pu	inch 🔻	
	「二二月」				
		名称	运动	接触板坯	
	10_di)	-16.0		
	10_pu	nch	0.0		
	10_bir	nder	15.0		
	圆形	 重置	确定	取消	
設約					
毛任 位置: 36.0 On: 10_punch ▼	ATT T		1112	Æ	
工具					
10_die -15.0 P					
10_binder 15.0 P					
		A + A	$+ \land + \land$	#	
			$\pm\pm\pm\pm$	<u> </u>	
	property of the				
				Ħ	
Y X					
ETA/DYNAFORM					

单击 预览->动画显示,进行动画预览,检查装配的正确性。单击 演示 按钮, 观看装配动画,确认无误后,单击 停止 按钮返回。

Sheet forming	
设置(S) 工具(I) <mark>预览(P)</mark> 提交(J)	
- 动画显示(A) 10.forming 设置摘要(S)	Ŧ
一般 板坯 边界条件 工具 工序 控制参数	
动画	
□单帧	
演示 停止	

单击提交>任务提交管理器...,提交计算,

Sheet forming		
设置(S) 工具(I) 预览(P)	提交(J)	
10.forming	· 输出LS-Dyna文件(E) 直接运行LS-Dyna(<u>R)</u> .	¥
一般 板坯 边界条件 工具	任务提交管理器(S) . 选项(Q)	

2. 拉深成形求解

创建分析模型之后就可以直接计算求解了,求解过程根据网格划分的精细程度、 模具参数设置、计算模型大小、计算机硬件条件的不同,其求解时间也会不同。

3. 计算结果分析

单击菜单栏上后处理,进入后处理界面,

文件(E)零件层(P)前处理(c) 模面工程(D) 坯料工程(B) 设置(S) 回弹补偿 工具(T)选项(O) 辅助工具(U) 视图(V) 分析(A) 后处理 帮助(H)

单击菜单栏上 File->Open...打开以 .d3plot 结尾的模拟结果文件,如下图所示:

. .					~
Look in	F:\实验助教\CAE模拟\给前老帅\h=15CAE(录屏)\		9		0
 ¹ h=15CAE ¹ h=15CAE ¹ h=15CAE ¹ h=15CAE ¹ 	.d3plot .d3plotaa .dynain				
File Name:		_		Ope	n
File Type:	LS-DYNA Post(d3plot, d3drlf, dynain, d3plotaa, d3plotint)	∇		Cano	el

为了方便观察,单击工具栏上 🜌 ,隐藏所有模具,只留下板料,如下图所示:

单击右侧 💟 图标,选择单帧模式,选取最后一帧,查看成形极限图

单击 🚰 ,选择单帧模式,选取最后一帧,查看厚度分布图

三、实验报告内容

- 1. 利用板料数值模拟软件,根据本实验第一部分的板料拉深成形工艺方式,设 计一带法兰的杯形件,参照上面的步骤,对拉深成形工艺进行数值模拟,写 成一份图文并茂的 WORD 文档实验报告。
- 2. 采用三种不同的展开坯料直径 D,分别进行数值模拟;通过三种数值模拟结果,观察坯料直径过大或过小时,拉深零件会出现什么现象,分析其原因, 并找到合理的毛坯直径。
- 3. 结合实验一板料拉伸实验,谈谈板料成形性能参数对于板料成形工艺数值模 拟的意义。